Exclusive handmade knives No. 1 in Ukraine
Every day, 24/7
No days off
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine
CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine

CHIEF 3 Black - knife handmade by master Vlad Velichka to order and buy in Ukraine

Загальна довжина клинка mm: Overall length: 285 mm
Матеріал леза Blade material: Blade made of N690 steel, with TCO (annealing) and cryo-treatment (heat treatment of knife steel using liquid nitrogen)
Твердість клинка (метал): Blade hardness: 62 HRC
Матеріал руків'я: Handle material: Micarta
Довжина леза Blade length: 150 mm
  • Availability: In Stock
6,000.00 грн.
Order in 1 click
We will call you back and clarify the details



The name of the knife - SHEF 3 - knife handmade by the master VLADA VELYCHKA order to buy in Ukraine
Knife type: Fixed blade
Brand: Studio Workshop-studio of handmade knives - VLADA VELYCHKA

Blade material: Blade made of N690 steel, with TCO (annealing) and cryo-treatment (heat treatment of knife steel using liquid nitrogen)
Steel sheet: Solid, for the entire length of the knife
Sharpening of the blade: Sharpening - 34° degrees
Reduction: 0.15 mm
Steel grade: Top steel N690, with TCO annealing and cryotreatment
Blade hardness: 62 HRC
Overall length: 285 mm
Blade length: 150 mm
Blade width: 38 mm
Blade thickness: 2.5 mm
Grinding of the blade: Finish - transverse manual satin 800 grit
Bolster material: Brass
Handle length: 135 mm
Handle thickness: 25 mm
Handle material: Micarta
Handle color: Black
Handle impregnation: None
Handle cover: None
Hole for a shoelace (for a lanyard): Absent
Temlyak - Absent
Sheaths: Absent

Model: SHEF 3 Black - handmade knife by master Vlad Velichka, order to buy in Ukraine
Model number: 024
Country of birth: Ukraine
Craftsman: Master VLAD VELYCHKO, Poltava, Ukraine Workshop-studio of handmade knives - VLADA VELYCHKA

Best Uses: Multipurpose, tactical, hunting, carcass splitting, slicing
Knife condition: new
The price is without sheath.

A sharpened knife is not a cold weapon.

Cutting tools, saws, removable blades are made from this steel. Used in the production of medical instruments.
High anti-corrosion properties! The knives performed well in wet conditions.

Original design.

The handle is subjected to a special water-repellent treatment.

Availability changes regularly, upon confirmation of your order, we will inform you about the availability or when the product will be ready. The product may differ slightly from the one shown in the photo.

Features of N690 steel

Martensitic alloy steel N690 is produced by the Vohleg-Uddeholm Gmbh&C corporation, which has its enterprises in Austria, Germany, South and North America. Another name for the alloy is Austrian cobalt stainless steel. Due to its high quality and operational characteristics and advantages, it is successfully implemented in many countries of the world for the manufacture of knives and other purposes.
Steel is produced by electroslag smelting technology. It has a uniformly distributed carbide structure of the crystal lattice in the absence of harmful impurities. As a result of heat treatment and forging, the impact toughness of the material increases without loss of hardness. The presence of alloying additives in the chemical composition of steel ensures resistance to corrosion.

Field of application
Steel is recognized as a good material for serial production of long-range and tactical knives, the technical characteristics of which allow operation in difficult and extreme conditions. Blades made of N690 steel are able to withstand not only longitudinal, but also strong lateral loads when acting on bends and twists.
Due to its resistance to corrosion and aggressive environments, steel is used in the manufacture of diving knives, harpoons for spearfishing and other sports equipment.
This steel is used in the manufacture of knives by such well-known European brands as Vokeg, Spyderco, Vepshmade and Echthema Ratio. Manufactured blades have excellent cutting properties, are strong, durable, sharpen well and hold an edge. The presence of alloying elements in the composition ensured high corrosion resistance while maintaining plasticity. If necessary, there is a possibility of thermal hardening up to 60 NKR.

The technical and physical characteristics of the alloy allow it to be used in mechanical engineering for the manufacture of tools, milling cutters, drills, parts of bearings and relevant components operating under high mechanical loads. The steel is highly wear resistant and can be heat treated.
Resistance to the effects of moisture and chemicals allows the use of steel in the food and pharmaceutical industry for the manufacture of cutting tools and grinders. At the same time, the ecological purity of the material and the complete absence of impurities are taken into account.
In terms of its composition, steel N690 is a close analogue of Russian steel 95X18, German X102SgMo17, Japanese / (3-10 and A115-10, French 2100СО17, American 440 С. In Sweden, an analogue of Sandvic 12С27 is produced).
Steel N690 contains:

■ 1.08% of carbon (C), which gives the material hardness and increases strength;
■ 17.3% chromium (Cg) to obtain anti-corrosion properties, increase wear resistance and change hardening conditions;
■ 1.1% molybdenum (Mo) to reduce brittleness, increase plasticity and resistance to high temperatures;
■ 0.1% vanadium (V) to increase metal elasticity and inertness to aggressive media;
■ 1.5% cobalt (C) increases heat resistance and improves mechanical properties;
■ 0.4% manganese (Mp) increases hardness;
■ 0.4% silicon (5|) to improve alloy stability and increase wear resistance.
The presence of cobalt in the chemical composition of the metal makes the crystal structure of N690 more uniform and resistant to mechanical loads.

The use of Austrian steel N690 allows the production of high-quality stainless knives for various purposes. Due to its physical and technical properties, the material is well processed, capable of heat treatment, is not prone to corrosion and is sold at an affordable price.
5*ee1 N690 is one of the best alloys for making beautiful wear-resistant blades. Simple sharpening and long-term preservation of the sharpness of the edge make use simple and convenient. You will never regret buying or making a knife from this steel.

Types of supplies
The high quality of Wohler N690 steel is ensured by the use of a unique rolling technology developed by the manufacturer. Metal sheets are subjected to repeated hot processing with rolling in the longitudinal and transverse directions. After that, the material is cold cut into strips.
N690 steel is supplied to the rolled metal market in the form of steel strips 3-5 mm thick, 20-50 mm wide and 250 to 1000 mm long, especially for the manufacture of knives. The cross-section of the strips is rectangular or with a prepared longitudinal bevel, which eliminates the need for blacksmithing when making the blade. The steel may or may not have previous heat treatment.
All of this is very convenient, as it does not require operations to cut large sheets, which allows you to accurately determine the amount of necessary material and reduces the amount of waste.
Strips are sold individually. The price depends on the geometric dimensions of the product, thicknesses and types of preliminary factory processing. For the products of the metalworking industry, we supply a sheet 2-8 mm thick, the size stated in the contract. If necessary, you can order any analogue of steels of type N690. Sheet metal is sold by weight.

It is worth remembering that when using knife for its intended purpose and careful handling, than it will serve you for a very, very long time.

*It should be remembered that if the knife is used for its intended purpose and with careful handling, the knife will serve you for a very, very long time.

Well, you can buy a knife made of powder steel N690 in Ukraine on our website https://knife.net.ua/ or by contacting us by phone +380961711010.

Happy shopping! We will be glad to see you among our customers!

Heat treatment. What is good and what is bad.

As a rule, when buying a knife, a typical customer will definitely ask two questions:

1. What steel is the knife made of?
2. What is the hardness?

That is, even a non-specialist somewhere in the depths of his soul understands that iron glands are different and can be processed in different ways. The latter, however, is obviously not for everyone.

Very often you can see statements like "I just bought a knife with 95X18 - it's a complete threshing floor, it crumbles on sausage, it's dull on oil." And then - "But you're driving, I've sorted out my three boars and at least henna." In general, the degree of user satisfaction with a knife is an extremely multifaceted issue, but it also includes steel and its maintenance. Which can be different. Sometimes strongly.

So what is heat treatment and what is it eaten with?

Well, it is already clear from the name that this term describes many methods of processing materials based on changing their structure (and, accordingly, properties) under the influence of temperatures. Often when applied to the finished product, this is often referred to as "tempering", although the actual tempering is only one of the stages. Sometimes, including hot deformation, all this is called TMO (thermomechanical treatment), which is mostly fundamentally incorrect. Heat treatment usually includes several stages (sometimes several dozen). They all have different goals and different modes. Adding to the confusion is the fact that in the theory of heat treatment and in practice quite often individual processes have different names depending on the purpose and place in the technological cycle. We will not go into the slums, the main stages and their regimes are more important to us from the point of view of the impact on the final result.

I think that it will be easier to analyze it on the example of a typical blade production technology (with an indication of the main technological processes), which is used by the vast majority of Russian (and global) manufacturers. Consider a typical scheme used by private craftsmen and small-scale manufacturers.

1. Normalization (sometimes + long vacation)
(cutting forms)
2. Annealing or TCO.
3. Hardening with MKO
4. High leave
5. Hardening
6. Cryotreatment
7. Resulting vacation
(Rough grinding)
8. Vacation after grinding
(pure grinding and finishing)

In the event that it is processed by cutting, there may be additional vacations (or dropped).

Let's consider the influence of individual stages on the properties and quality of products.

1. Normalization (sometimes + high leave) - allows you to bring the structure of the steel "to a common denominator" from which you can dance further, relieve tension, grind the grain, in some cases remove the carbide mesh or obtain the necessary hardness for processing. It is carried out in the form of heating to temperatures above the temperature of phase transformations (often to temperatures that cause significant dissolution of carbides) and cooling in still air. At the same time, many steels are able to be roasted and obtain high hardness - in this case, a high release is added.

2. Annealing or TCO – Allows to grind the grain, reduce the hardness to minimum values (for processing by cutting or cold deformation), remove residual stress. It is carried out by heating to temperatures slightly above the temperature of phase transformations (in some cases - the intercritical region) and slow cooling to the temperature at which pearlite decomposition ends. It is often beneficial to replace annealing with thermocycling - repeated heating-cooling cycles to temperatures above/below the phase transformation temperatures, respectively. Such processing allows you to significantly grind the grain to a greater extent and, as a result, to obtain noticeably the best fur. Characteristics.

3. Hardening with MKO. It allows to significantly reduce the leash and warping of parts, thanks to the closing of micropores, in some cases, it slightly increases the hardness and fur. Steel indicators. It is performed as "soft" quenching from the intercritical region, as a rule, by cooling in oil.

4. High vacation (from the point of view of maintenance theory - pre-critical annealing) - relieves tension after fur. processing, which prepares the steel structure for hardening, in some cases reduces the steel hardness to minimum values.

5. Hardening - The main stage of maintenance. It consists in heating to temperatures above the phase transformation temperatures and, as a rule, causing significant dissolution of carbides, which create the necessary saturation of the solid solution with carbon and alloying elements, and rapid cooling (at a speed above the critical), which fixes this solid supersaturated solution.

6. Cryotreatment - cooling the product to low temperatures (usually -78 - 196C). It is intended to enable a more complete transformation of residual austenite, which increases hardness, resistance to crumpling and reduces the risk of austenite transformation during operation, but may reduce viscosity.

7. The resulting vacation - forms the final properties of the blade. Heating is usually carried out to relatively low temperatures (sometimes medium temperatures). When hardening on Tue

8. Vacation after grinding - relieves grinding stresses and sometimes stabilizes the austenite formed during grinding.

Not all stages are always necessary, some may be frequent forged or completely replace each other - it all depends on the steel and the technological cycle. In the case of the purchase of semi-finished products, a significant part of maintenance has already been done at the enterprise - manufacturers.

Maintenance stages are usually divided into preliminary and resulting maintenance. The resulting MOT forms the properties of the finished product (as a rule, this is all, starting from the last high-temperature stage - hardening), the task of MOT is to ensure the necessary technological properties and prepare the structure for the resulting MOT.

Of course, it is the resulting maintenance that most affects the "basic" properties of the steel, but it is the maintenance that often allows you to "squeeze" the maximum of what it is capable of from the steel.

Of course, there are no free cakes. As maintenance becomes more complicated, labor costs, equipment loading, etc. increase. Which inevitably leads to an increase in the price of products. Often reusable. Therefore, it is too optimistic to look for diamonds in the middle of the thicket. On the other hand, trying to squeeze the maximum can lead to such costs that the product acquires the status of "exclusive" with a corresponding price. We have to stop somewhere. Where exactly - each manufacturer decides for himself. More precisely, where his target buyer stops.

Let's consider the main options.

1. Shackled, heated in a furnace until bright yellow-hot, put in oil. I held it over the coal for 5 minutes - that's all... In this case, it is quite optimistic to count on at least an average result for this steel. With great experience, everything is possible...

2. Gave it to "some thermist" from the defense plant. What and how he did with the railway - this is a big secret... The result - from complete abomination to very good, although with a noticeable advantage of the first. Everyone decides on personnel.

3. There is a stove, there is a "data sheet", there is a strip of bourgeois steel. Knowledge and understanding of what and how - no. If you don't mow particularly hard, you can get a good result. Especially with modern steels - they are usually quite error tolerant.

4. The same + minimal ideas about what, where and why. As a rule, by accumulating and understanding one's own and other people's experience and personal responsibility, it is possible to obtain consistently good results.

5. Have a clear understanding of the subject and/or vast personal experience. Plus interest in the result and personal responsibility. These are prerequisites for obtaining stable results that are significantly above average. The author's maintenance schemes often allow you to squeeze much more out of the steels than what is expected of them.

6. Blades - champions also require some luck.

Let's consider the main errors during maintenance and their impact on product quality.

1. Insufficient hardness - as a rule, the result of underheating during hardening (rarely - overheating) or excessively high relaxation. In moderate forms, it is found on inexpensive knives as a compensator for overly simplified maintenance.

2. Excessive hardness and fragility of "Perecal". But here everything is more complicated. It is often not a question of high hardness, but of overheating during hardening (or not carried out PTO), when the steel gets too large a grain. Actually, hardness is not the only indicator of the quality of maintenance - the same hardness can be reached in different ways and with different results. So statements like "A knife higher than 58HRc is as fragile as glass" should be taken with healthy skepticism.

3. Carbonless layer. In the absence of protective atmospheres/coatings or vacuum equipment, there is almost always. When etched, it usually looks noticeably lighter than the background. With proper planning of the technical process, this layer is removed, but in some cases (for example, when hardening a thinly reduced workpiece or performing a knife with "chisel" sharpening without removing the decarburized layer), it can appear on the RK, with the saddest consequences for the latter. Sometimes it can cause errors regarding hardness - there it will be noticeably less than on the body of the blade and RK.

4. Cracks. They can appear at various stages of production, most often during forging, hardening or grinding. It is an unconditional irreparable marriage. The sale of such a blade (with the exception of VERY rare cases on multilayer swords or damascus) is a direct indication of the manufacturer's attitude to the matter. Crazy attitude.

5. Floods and warping. At long range they are practically inevitable, at short sword they are permissible to a certain extent.

In conclusion, some real stories about different knives.

1. During tempering, blacksmith A screws several dozen blanks with hairpins, throws them into the furnace, and goes to drink vodka. After a few hours, he returns, throws the "sandwich" into the oil tank, and goes to drink vodka. He doesn't take vacations - why is there anyway 58...

2. For many years, blacksmith B has been forging X12MF at temperatures 50 degrees higher than optimal. To a reasonable question about the reasons - "I always do this, people don't complain."

3. Enthusiast B decided to carry out cryoprocessing by quenching the pre-heated workpiece in liquid nitrogen. On the offer to first find the value of the heat of vaporization for liquid nitrogen in two days, he thoughtfully expressed "Bah."

4. Blacksmith G forges each workpiece differently. At the same time, he himself does not feel them and does not systematically collect reviews. Looking for a person...

5. Ma yster D during hardening of EACH blade, in addition to the author's maintenance and testing for hardness, always controls breakage - just in case. This is a request for a responsible attitude to the matter, which manifests itself in other issues and finds its mark in the price of the products.

So, choosing a MOT, you choose a MANUFACTURER. Different craftsmen may have different views on maintenance, but a responsible and self-respecting and consumer manufacturer will never sell a product with properties below a certain minimum. And in the case of marriage (which does not happen), he will make every effort to resolve the situation.

Related Products